1. Central Focus

a. Describe the central focus and purpose for the content you will teach in the learning segment.

[The central focus of my learning segment will be counting numbers 1-10. Through the design of my lesson plans, students will count accurately to answer the foundational question, “How many?” In this learning segment, I will address skills necessary for achievement in higher level thinking counting that involves mathematical reasoning. Students will practice counting in the context of rote sequencing, keeping track, one-to-one correspondence, remembering the amount, recognizing the numerals, and being able to associate the symbol with the quantity it represents. These skills will be necessary to successfully complete the activities within the three lessons; however, students will be reminded that mathematics can be found outside of the classroom as well. Students who understand the foundational skills of counting may be challenged with more complex concepts such as more and less as well as academic vocabulary that sets the foundation for future lessons. Essentially, I would like students to connect counting and cardinality. When counting objects, students should understand that the last number stated tells the number of objects. Students should understand that each successive number name refers to a quantity that is one larger. My students will understand counting conceptually and effectively apply the skill as they reason mathematically.]

b. Given the central focus, describe how the standards and learning objectives within your learning segment address: conceptual understanding, procedural fluency, AND mathematical reasoning or problem-solving skills

[With the central focus of the lessons being counting, the standards and learning objectives address conceptual understanding, procedural fluency, and mathematical reasoning. The standards prompt conceptual understanding by covering the habits necessary for counting. Throughout the lessons, students must understand the relationship between numbers and quantities by connecting counting to cardinality (K.CC.B.4). This foundational skill is essential to a student’s conceptual understanding. The standards covered within the lessons also call for student mastery of counting objects by saying the number names in standard order, pairing each object with one and only one number name and vice versa (K.CC.B.4.A). Students will also practice saying the last number name tells the number of objects counted, regardless of the arrangement or order in which they were counted (K.CC.B.4.B). These two standards support students’ procedural fluency, the application of the conceptual understanding of counting. Standard K.CC.B.4.A describes how to properly count, the process in which mastery can be expected, and standard K.CC.B.4.B requires students to keep track of their counting and remember the amount. Mastery of these processes allows for students to practice the concept of counting and transfer this knowledge to higher-level functions and thinking. Mathematical reasoning is supported through student understanding of successive number names referring to a quantity that is one larger (K.CC.B.4.C) and counting to answer, “How many?” questions about things arranged in a variety of ways, along with counting out a number of objects (K.CC.B.5). These standards foster the capacity to think logically and consider alternatives along with justification for the answer. Mathematical reasoning is necessary for all functions including process and development of understanding as well as the application of concepts. The learning objectives I crafted within the learning segment align with the standards. The learning objective within lesson one expects students to identify and build numbers 1-10, which reflects conceptual understanding. Students need these foundational skills to progress in the lesson. Students will apply this knowledge by manipulating cubes to create a “staircase” which prompts procedural fluency. Creating this staircase demonstrates one to one correspondence and conceptually addresses the successive number names that refer to a quantity one larger. The]
learning objective within lesson two requires students to have a firm grasp on conceptual understanding of counting when they must build and sequence numbers 1-10. These skills are necessary to put numbers in sequential order, reflecting procedural fluency. After this application of skills, students will challenge themselves with mathematical reasoning to understand the relationship between numbers and quantities. In lesson three, students will build ten in a variety of ways using a ten-frame and yellow and red counters. This summative lesson requires practice of the conceptual understanding of counting (physically building ten counters on the ten-frame), procedural fluency (utilizing one to one correspondence), and mathematical reasoning (the number counted is the same regardless of arrangement or color).]

c. Explain how your plans build on each other to help students make connections between:
 facts, concepts, computations/procedures AND mathematical reasoning or problem-solving strategies to deepen their learning of mathematics

 [Students will review facts during the introduction of the lesson. The warm-ups help activate prior knowledge as well as the skills necessary for the rest of the lesson. In lesson one, students will play “Miss Davis Says” in which a numeral card will be shown and students must perform a specified physical response the number of times displayed. This focuses on number recognition and counting up in sequential order. Lesson two then introduces numeral identification and putting numbers in sequential order. The “Numeral Song” and the Promethean Board activity in lesson three will guide number formation skills as well as reinforce number order. Students will be guided through whole class instruction setting the foundation for independent exploration. Conceptual understanding will develop using the facts reviewed in the beginning of each lesson as building blocks during additional guided exercises. In lesson one, students use number recognition and counting up to configure counters in a ten-frame. In lesson two, students use number order and counting up to demonstrate the number of dots necessary to fill each box of the ten-frame. In lesson three, students use number recognition to practice number formation. Modeling the activity for the lesson scaffolds students with the procedure of the activity so they know what to expect. In lesson one, students use the facts and concepts to build a staircase and record their observations. In lesson two, students create a tray of cookies with a sequential number of chocolate chip cookies on each one. In lesson two, students play the “Ketchup and Mustard” Game that allows students to show different ways of configuring the contents of a ten-frame. Students make connections between the modeled practice and the procedures that elicit independent mathematical exploration. As students explore with manipulatives, they will develop mathematical reasoning skills that are then demonstrated and articulated through dialogue during the independent practice and the whole group closure. The closure of the lessons challenge students with the concept of more and less setting the foundation for the next mathematics unit we will be addressing. Frontloading students with examples using the work they have just completed allows them to make connections and justify their answers with evidence. These mathematics lessons have been crafted to build on prior knowledge and to encourage connection building and mathematical reasoning.]

2. Knowledge of Students to Inform Teaching

For each of the prompts below (2a–c), describe what you know about your students with respect to the central focus of the learning segment.

Consider the variety of learners in your class who may require different strategies/support (e.g., students with IEPs or 504 plans, English language learners, struggling readers, underperforming students or those with gaps in academic knowledge, and/or gifted students).
a. Prior academic learning and prerequisite skills related to the central focus—Cite evidence of what students know, what they can do, and what they are learning to do.

[Setting the proper foundation for conceptual understanding of this learning segment, prerequisite skills already practiced include building, identifying, and writing the numbers 1-9. In addition, students are constantly reminded of good habits and skills during to continue such as “Check by counting” and “We try, try, again!” allowing students to flourish in a safe learning environment. Number recognition is included throughout the lessons as review. Students can count up to ten as well as build and identify the quantities of numbers shown in a variety of arrangements. Rote counting is such a crucial skill utilized throughout the lessons as an application for procedural fluency. Students are developing an understanding of the connection between counting and cardinality, that each successive number name refers to a quantity that is one larger, and the proper procedures and justifications to answer the overarching questions, “How many?” In lesson one, students are expected to know the numbers 1-9 by sight recognition and to be able to count to the specified number. Students will demonstrate this knowledge through the warm-up activity that serves as review. Students can count using one to one correspondence when they fill ten-frames with counters on the Promethean Board. Building the stairs gives students a visual representation of each successive number name referring to a quantity of one more. Lesson two builds off of the basic skills needed in lesson one and integrates the “Friends in Number Order” game that utilizes student understanding of number order and recognition. Students must also be able to show one to one correspondence, keeping track of numbers, number recognition, and the connection between counting and cardinality when being guided through Promethean Board ten-frame instruction. In lesson three, students know the numbers 1-10 and their corresponding quantities. Students can demonstrate this knowledge through the use of a ten-frame. Students are learning to create multiple ways to show ten. Throughout the closure of all lessons, students are being asked to justify their observations and ideas. More complex ideas of more and less are discussed at this time as well, using the manipulatives from that lesson so as to feed off of prior knowledge.]

b. Personal/cultural/community assets related to the central focus—What do you know about your students’ everyday experiences, cultural backgrounds and practices, and interests?

[Math is not only reviewed and discussed during math time; math is integrated cross-curricula and becomes reiterated throughout everyday experiences. In the morning routine, math plays an integral part, especially the central focus of this learning segment: counting. As a class we use ten-frames to chart the amount of days we have been in school. Using this format allows students to practice counting by tens and ones. The daily routine and repetition of this practice reinforces the concept of a whole ten-frame possessing or representing the number ten, while an incomplete ten-frame must then be counted by ones. Daily calendars also reinforce number recognition and order. The Brain Gym that utilizes total physical response allows the students to get their bodies ready for learning by participating in various stretching and breathing exercises monitored by counting together, reinforcing number order and counting up. Students understand that the number that is said last is the total number counted, so when I change the number of repetitions, students must practice stopping at the correct number. Students count the number of words that are read on a page during shared reading and they practice counting the number of words they plan to write in their individual writing journals for writing instruction. They can then check their work by counting the number of words they wrote to see if they kept their original thought in their head. In order to quell behavioral issues as well as making the learning process fun and celebrating academic struggle, I incorporated personal and community assets throughout the lesson. To explore mathematics creatively and imaginatively, I created specific “roles” within the lessons for each student to be. In lesson one, I use realia to transform]
students into construction workers to build staircases out of unifix cubes. In lesson two, I will bake ten chocolate chip cookies and wear a chef hat to portray what students would be doing independently. These stories give students an additional duty or task that helps them stay engaged and shows them a real-life example of how different jobs use mathematics. These jobs in the “real world” relate to all students, sensitive to differing cultures. Special attention to student interests also sparked many of the ideas for creativity within the lessons. Many students love to build with Legos while others like to play dress up or play with puppets, creating their own storylines. Some students enjoy playing the role of the teacher. Legos directly correlates to building the staircases in lesson one while the imagination and creativity necessary for pretend play encompasses each lesson with their new role as construction worker, chef, and artist. Students can be the teacher through the use of partner talk and peer collaboration as well as the total physical response activity in lesson two, “Friends in Number Order,” when students on the carpet helped guide students with numeral cards to the correct placement.

c. Mathematical dispositions related to the central focus—**What do you know about the extent to which your students:** perceive mathematics as “sensible, useful, and worthwhile, persist in applying mathematics to solve problems, and believe in their own ability to learn mathematics?

[Students have been constantly exposed to mathematics throughout daily routines, providing proof for its necessity for normal functions. Each student in the class has a classroom number assigned to them. Without mathematics, these numbers and their meanings would leave disorganization in the classroom functions and organization. Daily calendars reinforce number recognition and order. Mathematics is utilized within language arts lessons, as students count the number of words that are read and they practice counting the number of words they plan to write as they think of their sentence. In science, counting is utilized to graph the number of leaves by their apparent color, describing the changing season. Students are both explicitly told as well as shown that mathematics remains an important topic to learn for its usefulness in many facets. Students persist in applying mathematics to solve problems daily. Students use their counting skills on the playground when waiting to take turns on the swings. Students count up and when they reach ten, they must switch. Sharing is a main social skill that students at this age still struggle with, and math helps quell disputes. Using counting, students have learned to borrow and share equally through the use of mathematics. Creating active problem solvers, acting schemes for the students provide lessons one and two with a given a task or job from the “real world.” While validating the importance of mathematics, this also allows students to persevere through the task at hand as it is their “job”. Students must believe that they can be successful in mathematics. Framing questions for students in whole group that encourage justification allow students to share their thought processes and build off peer influence for further exploration. Using positive learning dialogue and mantras, students understand that this is a safe learning environment and failure is not just okay, but a part of the learning process. Students know that if they make a mistake, “It is okay! We just try, try again!” As my students wholly accept this mentality, their main focus is on the mathematics.]

3. **Supporting Students’ Mathematics Learning**

Respond to prompts below (3a–c). To support your justifications, refer to the instructional materials and lesson plans you have included as part of Task 1. In addition, **use principles from research and/or theory to support your explanations.**

a. Justify how your understanding of your students’ prior academic learning and personal/cultural/community assets (from prompts 2a–b above) guided your choice or adaptation of learning tasks and materials. Be explicit about the connections between the
Task 1: Planning Commentary

learning tasks and students’ prior academic learning, assets, mathematical dispositions, and research/theory.

[Materials and adaptations for the lessons in this learning segment were carefully considered for students’ best interests. Students used the Promethean Board in all three lessons, helping the students become better technologically literate in today’s society. Students are very familiar with this tool, as it is used daily during literacy centers to practice writing words and developing sentences. Within these mathematics lessons, the Promethean Board serves as a tool for flipcharts of ten-frames as well as blank writing slates. This large visual helps students who may become easily distracted stay engaged with such a large and interactive resource. For my students with specific learning needs, this resource allows them to see a visual representation of what is being explained. Two other main resources used within these lessons are unifix cubes and ten-frames, which have both been utilized in prior academic learning. In lesson one, ten-frames are used as another representation of quantities, a valuable learning application for all students, including students with learning needs. The ten-frames are used as a template in lesson two, for transfer of knowledge and skills for one to one correspondence of numbers. The ten-frames serve as the template of the summative assessment in lesson three, demonstrating different ways to create ten. Students natural disposition to ten-frames is not anxious, due to previous daily exposure to the tool in morning routine (counting the number of days in school) as well as utilization of this resource in previous mathematical lessons. The unifix cubes have also been used in previous math exercises. Students in the class have shown a real interest in building and constructing places and things with Legos during exploration time in the class, so I integrated this desire to build into the building staircase activity in lesson one. Partner talk assisted not only my students with autism, behavior needs, and my English Language learner but the entire rest of the class as well. Vygotsky supports the idea of child development through the integration of the more capable peer into instruction. Children develop in a social matrix formed by relationship and interactions with peers, so Vygotsky renders that learning within these realms allows for greater cognition due to open communication that can contribute to each others’ learning. I specifically paired students as math partners using Vygotsky’s theory of the more capable peer. Vygotsky argues that a more capable peer can build competency of a less capable peer and both partners can form an equal relationship for a common goal, working in the zone of proximal development. This partner work and collaboration allows students to perform at levels they cannot achieve on their own. Utilizing Vygotsky’s theories within my three lessons, students have ample opportunity to explain and justify their ideas, feeding off of different perspectives within a comfortable environment.]

b. Describe and justify why your instructional strategies and planned supports are appropriate for the whole class, individuals, and/or groups of students with specific learning needs.

[Whole class instruction within the lessons is tailored to meet the overarching standards and learning objectives indicated within the individual learning segments. The Promethean Board is used in all three lessons as a technological tool that is both engaging as a large visual stimulant and interactive. It aids with non-verbal representations of what is being stated. During whole group instruction, my students with specific learning needs receive preferential seating, so they can be successful. Vygotsky would argue the peer influences would serve these students well. Numeral cards and ten-frames serve as tools for visual learning and academic language is integrated and reiterated throughout the lesson to help my English Language learner grasp the academic vocabulary. Whole group responses and partner talk allow students to participate verbally, allowing more opportunity for my English Language Learner to practice applying this]
language within structure. Total physical response activities allow my student with Autism and my student with behavioral concerns to release energy in a beneficial manner and give them a movement break included within the lessons. Concluding discussions to end each lesson allow students to justify their findings and expose students to the more complex concepts of more and less. Reiterating this vocabulary as much as possible to frontload students benefits everyone in the class. On a more individual basis, students will be assisted in more personal areas of concern. Based on pre-assessments and informal assessments throughout the lessons, I can examine which students may need extra support one-on-one guidance. For my English Language learner, this one on one attention will highlight the academic vocabulary needs and practice utilizing these words and applying them to justify answers. My student with behavior concerns may be more successful with specific redirection as well as positive reinforcement of appropriate school behavior. My student with autism will benefit from gaining more verbal response time when explaining thinking to me. All of these students and the rest of the class will benefit from the kinesthetic learning the manipulatives (unifix cubes, staircase work-mat, cookie tray, cookies, ten-frames, counters) provide. When students reach the independent work stage, these students with learning needs receive preferential seating, closer to me so I can monitor their progress as well as seating by a more capable peer.

c. Describe common mathematical preconceptions, errors, or misunderstandings within your central focus and how you will address them.

[Based on pre-assessments, students often had the misconception that the number 6 and 9 were the same number, or they could not decipher which was which. By using the numeral cards for “Miss Davis Says” in lesson one, the “Friends in Number Order” game in lesson two, and the “Numeral Song” that also integrates number formation skills in lesson three, students will repeatedly review number recognition of these numbers. When students are required to write the numbers for activities (lesson two and three), students may struggle with number formation for numbers 3 and 5, among others. These numbers are often written backwards. To eradicate this error, the “Numeral Song” allows students to hear the instructions in the song while seeing a visual representation on the Promethean Board of the process to correctly write the number. Students can draw the numbers in the air as a total physical response to help engrain the proper motor skills for the task. Counting aloud without one to one correspondence to keep track of objects may also serve to be a challenge. In lesson one, the staircase work-mat allows students to check their work, to see if their stair fits the outline drawn. Lesson two allows students to create their own cookies with chocolate chips as one to one correspondence practice and lesson three has ten-frames to serve as structures for counting. Scaffolds and repeated instruction can help eradicate these errors for students.]

4. Supporting Mathematics Development Through Language

a. Language Function. Choose one language function essential for student learning within your central focus. Listed below are some sample language functions. You may choose one of these or another language function more appropriate for your learning segment:

<table>
<thead>
<tr>
<th>Categorize</th>
<th>Compare/contrast</th>
<th>Describe</th>
<th>Interpret</th>
<th>Justify</th>
</tr>
</thead>
</table>

[The language function essential for student learning within the central focus is justify.]

b. Identify a key learning task from your plans that provides students with opportunities to practice using the language function identified above. Identify the lesson in which the learning task occurs. (Give lesson day/number.)

[In lesson three, students will justify their findings throughout the lesson. Students must justify their conclusions stemming from previous learning in lessons one and two by using the skills...]
gained from these experiences and applying them to the task in lesson three. Creating different combinations and alternative solutions forming the number ten within a ten-frame provides the platform for important discussions between students and the teacher for clarification and exploration of connection-building. Guiding students through the practice first, allows for the foundational conceptual understanding to be introduced along with the proper scaffolding for procedural fluency. From this modeling students hear academic vocabulary used within the context of their activity, making an important connection to apply these terms independently. As students work through guided instruction they begin to organize their thoughts and create order to the mathematical processes at play. This baseline for justification occurs even before independent practice. Student input through whole group instruction will also aid in clarifying confusion as well as stimulating the thoughts of other students. During independent practice in lesson three, students use the “Ketchup and Mustard” Game to create multiple representations of ten using a ten-frame. This learning task provides the opportunity for students to justify their actions to a partner. Following Vygotsky’s theory of the more capable peer, this partnership allows students to reach their zone of proximal development through justification of their work.]

c. **Additional Language Demands.** Given the language function and learning task identified above, describe the following associated language demands (written or oral) students need to understand and/or use: Vocabulary and/or symbols **Plus** at least one of the following: Syntax and Discourse

Consider the range of students’ understandings of the language function and other language demands—what do students already know, what are they struggling with, and/or what is new to them?

[In lesson three, students will justify their findings through a variety of avenues, needing to understand both vocabulary and discourse for success. Students must be proficient with a list of academic vocabulary terms to reach a level of conceptual understanding that will allow them to adequately apply this knowledge to justify their answers. Students must comprehend academic vocabulary in order to exchange information and ideas while collaborating with a partner for the ten-frame exercise. The number names are necessary to understand for both counting and cardinality throughout the exercise and the other vocabulary terms are needed in order to justify the student’s work and connect to both prior learning as well as make predictions and use for higher level thinking discussions. Through different forms of discourse, students will have the opportunity to justify their observations and findings using partner talk, whole class discussion, and making connections to prior learning. During the instructional phase in lesson three, students have time for partner talk, discussing the ways they would personally construct the ten-frame being built. Questions such as, “How would you build the ten-frame?” and “How can you check your work? How do you know?” These scaffolding questions help guide students to their justification. Partner talk allows each student to respond and think critically about what is being asked. Reviewing answers to these questions then provides students with examples of proper responses. Whole group closure of the activity allows for students to review the main concepts and standards from the lesson. This can be accomplished by also making connections to previous learning.]

d. **Language Supports.** Refer to your lesson plans and instructional materials as needed in your response to the prompt.

Describe the instructional supports (during and/or prior to the learning task) that help students understand and successfully use the language function and additional language demands identified in prompts 4a–c.
Throughout the three lessons included in this learning segment, students have many scaffolding tools to help them justify their work while properly utilizing the language demands. In all three lessons students use the numeral cards and a ten-frame flipchart on the Promethean Board. The numeral cards serve as a visual aid to help students build number recognition skills. The appropriate academic vocabulary must be used when naming each number. Without this knowledge, students cannot hope to connect counting and cardinality. The Promethean Board helps students explore one to one correspondence as well as a visual representation of counting. As students build number quantities using the ten-frames, students can justify their answers by counting, utilizing the central focus of the learning segment. By modeling the use of the ten-frames using terminology such as count, group, number, more, and the number names allow students to comprehend the mathematical process and then justify their answers. In lesson one the students receive a building staircase work-mat that allows them to check their work when building on their own. These work-mats have the numbers labeled under each corresponding staircase, showing the written symbol for the proper academic vocabulary to be used. In lesson two, students are encouraged to use the skills and vocabulary learned in lesson one when creating their cookie tray. Each cookie tray was to be labeled with the appropriate symbol corresponding to the academic vocabulary used to justify their answers, while demonstrating the connection between counting and cardinality. In lesson three, students received the ten-frame sheet with spaces to write their findings as follows: ______ Red ______ Yellow, with the spaces underlined in the appropriate colors to aid in vocabulary development.

5. Monitoring Student Learning

In response to the prompts below, refer to the assessments you will submit as part of the materials for Task 1.

a. Describe how your planned formal and informal assessments will provide direct evidence of students’ conceptual understanding, computational/procedural fluency, AND mathematical reasoning or problem-solving skills throughout the learning segment.

Informal assessments help gauge student participation and understanding through attentive observation. Using data gained informally, students can receive assistance for improved conceptual understanding through partner talk, small group work, peer buddy, and whole class response exercises. Informal assessments within these lessons will help me find patterns of learning and common misconceptions or errors so we can go over these whole group. These assessments direct future instruction to promote procedural fluency and mathematical reasoning skills. Notes taken on a grid with student names and numbers will help me keep track of informal assessments I make throughout the lessons. The formal assessment for lesson one requires the student to record the staircase built from unifix cubes representing numbers 1-10. In lesson two, students create a tray of ten chocolate chip cookies that have the corresponding number of chocolate chips for the numeral written with it. In lesson three, students participate in the Ketchup and Mustard Game and record their results on the Ten-Frame Recording Sheet. This game encourages students to find different arrangements of the counters to represent the number ten. All three of these summative assessments gauge students’ conceptual understanding, procedural fluency, and mathematical reasoning. Conceptual understanding is assessed through the one to one correspondence demonstrated by building the correct numbered staircase, baking the matching number of chocolate chips to its numeral, and filling up the ten-frame for the broad concept of ten. These assessments connect counting to cardinality (CCSS.MATH.CONTENT.K.CC.B.4). Procedural fluency is assessed when counting objects in the correct order (CCSS.MATH.CONTENT.K.CC.B.4.A) and understanding the last number stated refers to the total amount (CCSS.MATH.CONTENT.K.CC.B.4.B). Procedural fluency is demonstrated in lesson one when pairing each step with one number name, lesson two when chocolate chips indicate the total amount shown by the numeral, and lesson three
through the necessity of keeping count with various arrangements and combinations to count. Mathematical reasoning is assessed when students demonstrate the skills required when counting things in a scattered configuration (CCSS.MATH.CONTENT.K.CC.B.5) and understand that each successive number name refers to a quantity that is one larger by pointing to an example on their sheet and stating the number that has a quantity that is one more (CCSS.MATH.CONTENT.K.CC.B.4.C). The mathematical reasoning is demonstrated both verbally in all sections as well as within their work as each number representation is one quantity larger when in number order.

b. Explain how the design or adaptation of your planned assessments allows students with specific needs to demonstrate their learning.

Consider all students, including students with IEPs or 504 plans, English language learners, struggling mathematics students, underperforming students or those with gaps in academic knowledge, and/or gifted students.

[My student with Autism is very good at art; therefore, I attempted to create assessments with a more creative procedure to them (color stairs, glue and draw chocolate chip cookies, crayons for documentation of ten-frame). In lesson two, students glued and drew to create a tray of chocolate chip cookies, showing understanding of number order, one to one correspondence, and counting and cardinality. In lesson three, students took on the role of “artist” to create their own ten-frame masterpieces, making different combinations of red and yellow counters and drawing them into the ten-frame structure. This expressive method of assessment will allow her to learn when independently practicing as well as demonstrate the central focus of the learning segment. My English Language learner receives instruction on academic language throughout the whole group instruction period and then will be able to demonstrate his understanding through the summative assessments of each lesson. The assessments are all very visual without a lot of English Language used to confuse the process. This visual style of assessment allows him to be hindered less by language barriers. Students with behavioral concerns, as well as others in the class as they behave like naturally five year-olds with a short attention span, will show their engagement as well as mathematical understanding using kinesthetic means of assessment. In lesson one students build a staircase out of unifix cubes and record their findings. In lesson two, students create a tray of cookies by gluing the beige construction paper circles onto their “tray” and drawing the correct number of chocolate chips that correspond to the number written. In lesson three, students play the “Ketchup and Mustard” Game that allows them to record different ways of making ten utilizing a ten-frame. All of these lessons have summative assessments that elicit student engagement throughout their completion. This will keep students on task and less likely to become distracted and act out to show their understanding of the central focus. For students who need a greater challenge and finish the activity/assessment early, they have a task after every lesson. In lesson one, students will practice writing the numbers on the back of the worksheet, gaining extra practice for number formation skills that will be utilized in the next two lessons. In lesson two, students will attempt to create more than ten chocolate chip cookies, finding the pattern of “one more” discovered in lesson one and reiterated in lesson two, to create more cookies on the cookie tray. In lesson three, students will practice number formation on the sides of the worksheets and then talk with their partner about each combination which color has more counters and how they know that. The extension for lesson three specifically targets student justification methods. The three formal assessments within this learning segment cater to a wide range of student needs and take into account for many student strengths and interests.]